vascular aumentado o con antecedente familiar de disfunción endotelial.
La variante C677T del gen que codifica para la enzima MTHFR es el más importante determinante genético del nivel de Hcy en la población general. Esta enzima, de menor actividad, incrementa la concentración sérica de Hcy, el riesgo de enfermedad cardiovascular y es además un indicador de reducción de metilación del ADN, lo que puede ser un factor de riesgo adicional para algunos tipos de cáncer. Este SNP es un ejemplo de cómo a través del conocimiento de un genotipo específico y mediante el ajuste en la ingesta de nutrientes se puede prevenir una enfermedad.
La genómica nutricional proporciona una explicación de por qué una recomendación nutricional que es óptima para la población general, no podrá beneficiar a ciertos individuos. Esto significa que los polimorfismos genéticos participan en la determinación de respuestas heterogéneas frente al consumo de nutrientes específicos, como en este caso, el ácido fólico. La definición de la concentración óptima de micronutrientes necesarios para mantener las células en un estado estable genómicamente sigue siendo uno de los principales desafíos para los investigadores en nutrigenómica. Dado que la HHcy se sospecha como un factor de riesgo para otras enfermedades como fisuras orales, síndrome de Down, enfermedades placentarias, neoplasia colorectal, enfermedad de Alzheimer, defectos del tubo neural, entre otras, por lo que la revisión realizada en este trabajo no es solo útil para la prevención de las ECV. Debido a la alta prevalencia del SNP C677T del gen que codifica para la enzima MTHFR en población europea, una de las principales corrientes migratorias en Argentina y otros países sudamericanos, es pertinente considerar su detección en personas que no responden al tratamiento convencional para mejorar la función endotelial y que tienen antecedentes familiares mayores para ECV.
Las innumerables alteraciones ocurridas en el ADN de cada célula humana cotidianamente deben ser reparadas de manera eficiente para la conservación del genoma. La dieta y el estilo de vida son los principales factores de mediación en esta ecuación.
Organización Mundial de la Salud. Enfermedades cardiovasculares. OMS Nota descriptiva 2015. http://www.who.int/mediacentre/factsheets/fs317/es/. Ginebra: Organización Mundial de la Salud, 2015.
McCully KS, Ragsdale BD. Production of arteriosclerosis by homocysteinemia. Am J Pathol 1970; 61:1-11.
Graham IM, Daly LE, Refsum HM, et al. Plasma homocysteine as a risk factor for vascular disease. The European concerted action project. JAMA. 1997; 277:1775-81.
Gupta SK, Kotwal J, Kotwal A, Dhall A, Garg S. Role of homocysteine & MTHFR C677T gene polymorphism as risk factors for coronary artery disease in young Indians. Indian J Med Res. 2012; 35:506–12.
Josep J, Loscalzo J. Methoxistasis: Integrating the Roles of Homocysteine and Folic Acid in Cardiovascular Pathobiology. Nutrients. 2013; 5:3235-56.
Chiuve SE, Giovannucci EL, Hankinson SE. Alcohol intake and methylenetetrahydrofolate reductase polymorphism modify the relation of folate intake to plasma homocysteine. Am J Clin Nutr. 2005; 82:155–62.
Wilcken B, Bamforth F, Li Z, et al. Geographical and ethnic variation of the 677C-->T allele of 5,10 methylenetetrahydrofolare reductase (MTHFR): findings from over 7000 newborns from 16 areas worldwide. J Med Genet. 2003; 40:619-625.
Tanaka T, Scheet P, Giusti B, et al. Genomewide association study of vitamin B6, vitamin B12, folate, and homocysteine blood concentrations. Am J Hum Genet. 2009; 84:477-482.
Holmes MV, Newcombe P, Hubacek JA, et al. Effect modification by dietary folate on the association between MTHFR genotype, homocysteine, and stroke risk: a meta-analysis of genetic studies and randomised trials. Lancet. 2011; 378:584-594.
Khandanpour N, Willis G, Meyer FJ, et al. Peripheral arterial disease and methylenetetrahydrofolate reductase (MTHFR) C677T mutations: a case-control study and meta-analysis. J Vasc Surg. 2009; 49:711-8.
Moat SJ and McDowell IFW. Homocysteine in health and disease. Brain. 2002; 125:682-683.
Franken DG, Boers GH, Blom HJ, Trijbels FJ, Kloppenborg PW. Treatment of mild hyperhomocysteinemia in vascular disease patients. Arterioscler Thromb. 1994;14: 465-70.
Austin RC, Lentz SR, Werstuck GH. Role of hyperhomocysteinemia in endotelial dysfunction and atherothrombotic disease. Cell Death Differ. 2004; 11:S56-S64.
Lang D, Kredan MB, Moat SJ, et al. Homocysteine-induced inhibition of endothelium dependent relaxation in rabbit aorta: role for superoxide anions. Arterioscler Thromb Vasc Biol. 2000; 20:422-7.
Faraci FM, Lentz SR. Hyperhomocysteinemia, oxidative stress, and cerebral vascular dysfunction. Stroke. 2004; 35:345-7.
Outinen PA, Sood SK, Pfeifer SL, et al. Homocysteine-induced endoplasmic reticulum stress and growth arrest leads to specific changes in gene expression in human vascular endothelial cells. Blood. 1999; 94:959-67.
Antoniades C, Shirodaria C, Leeson P, et al. MTHFR 677C>T polymorphism reveals functional importance for 5-methyltetrahydrofolate, not homocysteine, in regulation of vascular redox state and endothelial function in human atherosclerosis. Circulation. 2009; 119:2507-2515.
Antoniades C, Shirodaria C, Warrick N, et al. 5-methyltetrahydrofolate rapidly improves endothelial function and decreases superoxide production in human vessels: effects on vascular tetrahydrobiopterin availability and eNOS coupling. Circulation. 2006; 114:1193-201.
Poddar R, Sivasubramain N, DiBello PM, Robinson K, Jacobsen DW. Homocysteine induces expression and secretion of monocyte chemoattractant protein-1 and interleukin-8 in human aortic endothelial cells: implications for vascular disease. Circulation. 2001; 103:2717-23.
Durand P, Lussier-Cacan S, Blanche D. Agute methionine load-induced hyperhomocysteinemia enhances platelet aggregation, thromboxane biosynthesis, and macrophage-derived tissur factor activity in rats. FASEB J. 1997; 11:1157-68.
Ron D. Trannslational control in the endoplasmic reticulum stress response. J Clin Invest. 2002; 110:1383-8.
Rutkowski DT, Kaufman RJ. A trip to the ER: coping with stress. Trends Cell Biol. 2004; 14:20-8.
Nohturfft A, Yabe D, Goldstein JL, Brown MS, Espenshade PJ. Regulated step in cholesterol feedback localized to budding SCAP from ER membranes. Cell. 2000; 102:315-23.
Ye J, Rawson RB, Komuro R, et al. ER stress induces cleavages of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell. 2000; 6:1355-64.
Zhou BS, Bu GY, Li M, Chang BG, Zhou YP. Tagging SNPs in the MTHFR Gene and Risk of Ischemic Stroke in a Chinese Population. Int J Mol Sci. 2014; 15:8931-40.
Chen W, Hua K, Gu H, Zhang J, Wang L. Methylenetetrahydrofolate Reductase C667T Polymorphism is Associated with Increased Risk of Coronary Artery Disease in a Chinese Population. Scand J Immunol. 2014; 80:346-53.
Zittan E, Preis M, Asmir I, Cassel A, Lindendeld N, et al. High frequency of vitamin B12 deficiency in asymptomatic individuals homozygous to MTHFR C677T mutation is associated with endothelial dysfunction and homocysteinemia. Am J Physiol Heart Circ Physiol. 2007; 293:H860-5.
Wald DS, Bishop L, Wald NJ, et al. Randomized trial of folic acid supplementation on serum homocysteine levels. Arch Intern Med. 2001; 161:695-700.
Voutilainen S, Rissanen TH, Virtanen J, Lakka TA, Salonen JT, Kuopio Ischemic Heart Disease Risk Factor Study. Low dietary folate intake is associated with an excess incidence of acute coronary events: The Kuopio Ischemic Heart Disease Risk Factor Study. Circulation. 2001;103:2674-80.
Yakub M, Moti N, Parveen S, Chaudhry B, Azam I, Igbal MP. Polymorphisms in MTHFR, MS and CBS Genes and Homocysteine Levels in a Pakistani Population. PLoS One. 2012; 7:e33222.
Shiran A, Remer E, Asmer Iet al. Association of Vitamin B12 Deficiency with Homozygosity of the TT MTHFR C677T Genotype, Hyperhomocysteinemia, and Endothelial Cell Dysfunction. Isr Med Assoc J 2015; 17:288–92.
Ubbink JB, Vermaak WJ, van del Merwe A, Becker PJ, Delport R, Potgieter HC. Vitamin requirements for the treatment of hyperhomocysteinemia in humans. J Nutr. 1994; 124:1927-33.
Ubbink JB, Vermaak WJ, van del Merwe A, Becker PJ. Vitamin B-12, vitamin B-6, and folate nutritional status in men with hyperhomocysteinemia. Am J Clin Nutr. 1993; 57:47-53.
Jacques PF, Bostom AG, Wilson PW, Rich S, Rosemberg IH, Selhub J. Determinants of plasma total homocysteine concentration in the Framingham Offspring cohort. Am J Clin Nutr. 2001; 73:613-21.
Jacques PF, Kalmbach R, Bagley PJ, et al. The relationship between riboflavin and plasma total homocysteine in the Framingham Offspring cohort is influenced by folate status and the C677T transition in the methylenetetrahydrofolate reductase gene. J Nutr. 2002; 132:283-8.
McNulty H, McKinley MC, Wilson B, et al. Impaired functioning of thermolabile methylenetetrahydrofolate reductase is dependent on riboflavin status: implications for riboflavin requirements. Am J Clin Nutr. 2002; 76:436-41.
Midttun O/, Hustad S, Scheneede J, Vollset SE, Ueland PM. Plasma vitamin B-6 forms and their relation to transsulfuration metabolites in a large population-based study. Am J Clin Nutr. 2007; 86:131-8.
Ye X, Maras JE, Bakun PJ, Tucker KL. Dietary intake of vitamin B6, plasma pyridoxal 5´-phosphate and homocysteine in Puerto Rican adults. J Am Diet Assoc. 2010; 110:1660-8.
Brouwer IA, van Dusseldorp M, West CE, et al. Dietary folate from vegetables and citrus fruit decreases plasma homocysteine concentrations in human in a dietary controlled trial. J Nutr. 1999; 129:1135-9.
Riddell LJ, Chisholm A, Williams S, Mann JL. Dietary strategies for lowering homocysteine concentrations. Am J Clin Nutr. 2000; 71:1448-54.
Venn BJ, Mann JL, Williams SM, et al. Dietary counseling to increase natural folate intake: a randomized, placebo-controlled trial in free-living subjects to assess effects on serum folate and plasma total homocysteine. Am J Clin Nutr. 2002; 76:758-65.
Zappacosta B, Mastroiacovo P, Persichilli S, et al. Homocysteine Lowering by Folate-Rich Diet or Pharmacological Supplementations in Subjects with Moderate Hyperhomocysteinemia. Nutrients. 2013; 5:1531-43.